Structural basis of ciliary movement.

نویسنده

  • P Satir
چکیده

All motile somatic cilia, including those of the human respiratory tract, are similar in ultrastructure in that they consist of an axenome of 9 + 2 microtubules surrounded by a specialized extension of the cell membrane. The axonemal elements provide the ciliary motor, which is powered by ATP hydrolysis. In respiratory cilia, mutants occur where axonemal assembly is aberrant such that the doublet attachments known as arms (Afzelius and co-workers) or spokes (Sturgess) have been shown to be missing. These mutant cilia are apparently nonmotile. In model cilia, the arms are composed of dynein, a class of ATPase isoenzymes and associated polypeptides characterized byGibbons and colleagues. In negative stain preparations of arms, three subunits can be seen. In the presence of ATP, dynein functions with a set polarity to form transient cross-bridges that cause the microtubule doublets of the axoneme to slide relative to one another. After brief trypsin treatment, the axonemal microtubules slide almost completely apart with the arms of doublet n pushing doublet n + 1 in a tipward direction. To produce ciliary beating in vivo, sliding is carefully controlled and coordinated, in part probably by the spoke system. The ciliary membrane is responsible for maintaining the appropriate levels of ATP, Mg2+, and Ca2+, and Ca2+ (ca. 10(-7) M) around the axoneme. The beat of certain cilia--e.g., L cilia of mussel gills--can be arrested by increasing axonemal Ca2+ concentration, for example, in the presence of the ionophore A23187 and high external Ca2+. Although the net results of changes in axonemal Ca2+ concentration are not always complete stoppage of beat or of sliding, this ion is also part of the general behavioral control of ciliary motility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The structural basis of the blood-aqueous barrier in the chicken eye.

In order to identify the structural basis of the blood aqueous barrier in the chicken eye, the morphology of the blood vessels and epithelium of the ciliary body were examined with light microscopy, conventional electron microscopy, and the freeze-fracturing technique; the permeability properties of the vessels and epithelium were tested with intravascular injection of horseradish peroxidase (H...

متن کامل

Ciliary Body Tuberculosis Presenting with Attacks of Acute Intraocular Pressure Rise

Purpose: To report a rare presentation of ophthalmic tuberculosis. Case Report: A 19-year-old man was referred to the glaucoma clinic due to multiple attacks of increased intraocular pressure (IOP) in his right eye. IOP of the right eye was 50 mmHg, and glaucomatous damage of the optic nerve was present. In gonioscopy, an oval-black lesion was present in the ciliary body band on the temporal si...

متن کامل

Intracellular and extracellular forces drive primary cilia movement.

Primary cilia are ubiquitous, microtubule-based organelles that play diverse roles in sensory transduction in many eukaryotic cells. They interrogate the cellular environment through chemosensing, osmosensing, and mechanosensing using receptors and ion channels in the ciliary membrane. Little is known about the mechanical and structural properties of the cilium and how these properties contribu...

متن کامل

Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye.

PURPOSE The underlying causes of presbyopia, and the functional relationship between the ciliary muscle and lens during aging are unclear. In the current study, these relationships were studied in rhesus monkeys, whose accommodative apparatus and age-related loss of accommodation are similar to those in humans. METHODS Centripetal ciliary body and lens equator movements were measured during a...

متن کامل

Accommodation dynamics in aging rhesus monkeys.

Accommodation, the mechanism by which the eye focuses on near objects, is lost with increasing age in humans and monkeys. This pathophysiology, called presbyopia, is poorly understood. We studied aging-related changes in the dynamics of accommodation in rhesus monkeys aged 4-24 yr after total iridectomy and midbrain implantation of an electrode to permit visualization and stimulation, respectiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 35  شماره 

صفحات  -

تاریخ انتشار 1980